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Abstract

A linear stability analysis is presented for a liquid sheet that includes the e�ects of the surrounding
gas, surface tension and the liquid viscosity on the wave growth process. An inviscid dispersion relation
is used to identify the transition from a long wavelength regime to a short wavelength regime, analogous
to the ®rst and second wind induced breakup regimes of cylindrical liquid jets. This transition, which is
found to occur at a gas Weber number of 27/16, is used to simplify the viscous dispersion relation for
use in multi-dimensional simulations of sheet breakup. The resulting dispersion relation is used to
predict the maximum unstable growth rate and wave length, the sheet breakup length and the resulting
drop size for pressure-swirl atomizers. The predicted drop size is used as a boundary condition in a
multi-dimensional spray model. The results show that the model is able to accurately predict liquid
spray penetration, local Sauter mean diameter and overall spray shape. # 1999 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Pressure-swirl atomizers are widely used in gas turbine engines, industrial furnaces,
agricultural sprays, and gasoline direct injection automotive engines. These atomizers generate
a thin, liquid sheet which spreads radially due to the initial swirl. The purpose of the atomizers
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is to produce small drops spread over a wide angle. In order to model the drop formation
process, one must postulate a mechanism of sheet breakup and pose a mathematical
formulation of this mechanism. Past researchers, such as Taylor (1940), Dombrowski and
Johns (1963), and others have speculated that the drop sizes may be correlated with the
wavelengths that grow on the surface of the sheet. Dombrowski and Johns derived a dispersion
relation for the growth rate of long waves with in®nitesimal amplitude, including the e�ects of
surface tension, aerodynamic forces, and liquid viscosity. They identi®ed the wavelength with
the largest growth rate and assumed that this wave broke up the sheet at half wavelength
intervals into ligaments. The ligaments then broke up into droplets, according to Weber's
theory for a cylindrical liquid column. This methodology, shown in Fig. 1, has been widely
used, as in the case of Mitra and Li (1998). It should be noted that other sheet breakup
mechanisms have also been observed. For example, Stapper et al. (1992) identi®ed a `stretched
stream-wise ligament breakup' regime which occurs at low liquid velocities with co¯owing air.
In this regime, stream-wise vortical waves become ampli®ed and thin liquid membranes are
formed in between them. Eventually the membranes burst, forming small drops, while the
vortical waves produce stream-wise ligaments which breakup into relatively large drops
(Stapper et al., 1992). A second regime, or `cellular breakup' regime, was found to occur at
higher relative velocities. In this regime, both stream-wise and span-wise waves are present
(Stapper et al., 1992). The stream-wise waves and connecting membranes burst to form small
droplets, while the span-wise waves detach to form ligaments as in Fig. 1. These ligaments
undergo further breakup to form droplets. The present study is restricted to the growth of
span-wise waves as suggested by Dombrowski and Johns (1963).
Though Dombrowski and John's breakup mechanism is supported experimentally, as in

Crapper et al. (1973), there are some unresolved issues with their mathematical assumptions.
First, Dombrowski and Johns used a one-dimensional model of the liquid ®lm by neglecting
any variation in the y-direction within the sheet (see Fig. 2 for the coordinate axes). As will be
shown in a following section, such an assumption, which was also made by Weihs (1978),
cannot be used for a viscous sheet. Thus, the assumptions of Dombrowski and Johns lead to a
contradiction and an inaccurate dispersion equation. Furthermore, Dombrowski and Johns,
like Squire (1953), assumed long waves. However, under the conditions found in modern

Fig. 1. Schematic of the sheet disintegration and drop formation processes as proposed by Dombrowski and Johns
(1963).
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atomizers, the long wave assumption leads to inaccuracies in the predicted sheet stability. Li
and Tankin (1991) and Hagerty and Shea (1955) did not make this assumption, but only Li
and Tankin included the e�ects of viscosity. Hagerty and Shea also assumed that the ratio of
gas-to-liquid density was much smaller than the hyperbolic tangent of the product of wave
number and sheet thickness (for sinuous waves). The present work indicates that this
assumption leads to inaccuracies at very low gas Weber numbers. On the other hand, Li and
Tankin's viscous result is quite general, but it is also somewhat cumbersome for use in multi-
dimensional models, requiring the numerical solution of a non-linear, complex equation.
While extensive research has been performed in an attempt to understand the linear and

non-linear behavior of liquid sheets, the current state-of-the-art in hollow-cone spray modeling
either ignores the primary atomization process (e.g., Xu and Markle, 1998; VanDerWege,
1999), or utilizes results based on inviscid theory simpli®ed by long wave assumptions (e.g.,
Han et al., 1997; Ren and Nally, 1998). On the other hand, the goal of the present work is the
formulation of a sheet breakup model including the e�ects of liquid viscosity, surface tension
and the surrounding gas which can be readily implemented in multi-dimensional simulations of
transient sprays. An analysis for the growth of sinuous waves on a thin liquid sheet
surrounded by a stationary gas is presented and shown to be consistent with Li and Tankin's
(Li and Tankin, 1991) general, viscous dispersion relation. The inviscid expressions of Hagerty
and Shea (1955) and Squire (1953) are also recovered when the same assumptions are applied
to the present expression. Using an inviscid model equation, a critical Weber number for the
transition from long to short wave growth is derived. It is shown that the long wave regime is

Fig. 2. Schematic of (a) antisymmetric or sinuous waves and (b) symmetric or varicose waves.
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dominant for low-speed sheet atomization, while short waves are responsible for breakup in
the case of high-speed sheets, primarily of interest in the present work. This result is used to
simplify the general viscous expression and derive new dispersion relations in each regime for
application to thinning viscous sheets. A long wave expression is presented which corrects the
coe�cients of the viscous terms in Dombrowski and John's (Dombrowski and Johns, 1963)
dispersion relation. In addition, the maximum growth rates and corresponding wave numbers
as predicted from the short wave expression are shown to agree well with numerical solutions
of the general dispersion relation. When combined with current secondary breakup, drop drag
and collision models, the present primary atomization model is shown to accurately predict
experimentally measured spray features for both inwardly and outwardly opening pressure-
swirl atomizers.

2. Linear stability analysis

The present stability analysis for a liquid sheet, which includes the e�ects of the surrounding
gas and liquid viscosity, is formulated from the equations of motion and follows the approach
of Sterling and Sleicher (1975), Levich (1962) and Reitz and Bracco (1986) for the analysis of
the stability of cylindrical liquid jets.
Consider a two-dimensional, viscous, incompressible liquid sheet of thickness 2h moving

with velocity U through a quiescent, inviscid, incompressible gas medium. The liquid and gas
have densities of r1 and r2, respectively, and the viscosity of the liquid is m1.

1 A coordinate
system is used which moves with the sheet, and a spectrum of in®nitesimal disturbances of the
form

Z � R
�
Z0 exp�ikx� ot�� �1�

are imposed on the initially steady motion. The instability produces ¯uctuating velocities and
pressures u1, v1 and p1 for the liquid, and u2, v2 and p2 for the gas. In Eq. (1), Z0 is the initial
wave amplitude, k � 2p=l is the wave number, and o � o r � io i is the complex growth rate.
The most unstable disturbance has the largest value of o r, denoted by Os in the present work,
and is assumed to be responsible for breakup. The resulting ligament size is related to the
maximum unstable wavelength Ls � 2p=Ks where Ks is the wave number corresponding to the
maximum growth rate Os. Thus, it is desired to obtain a dispersion relation o � o�k� from
which the most unstable disturbance can be deduced.
To obtain the dispersion relation, the linearized liquid continuity and momentum equations

must be solved subject to the following linearized boundary conditions at the interfaces
(y �2h) between the liquid and gas:

v1 � @Z
@t

�2�

1 In the present work, subscript 1 refers to quantities for the liquid phase, and subscript 2 refers to quantities for
the gas phase.
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@v1
@x
� ÿ@u1

@y
�3�

ÿp1 � 2m1
@v1
@y
� p2 � s

@2Z
@x2

�4�

where s is the surface tension. Eqs. (2)±(4) are mathematical statements of the kinematic free
surface condition, continuity of shear stress (or zero shear stress at the surface since the gas is
assumed inviscid) and continuity of normal stress, respectively.
The linearized equations of motion for the gas must also be solved in order to obtain the gas

pressure, p2, in Eq. (4). The gas phase boundary conditions require that

v2 � @Z
@t
�U

@Z
@x

�5�

at the interfaces (y �2h) and that

u2,v2,p240 �6�
far from the interface (y41).
In order to solve the liquid equations, the velocities are separated into two parts using the

Helmholtz decomposition:

u1 � uI � uR � @f1

@x
ÿ @c1

@y
�7�

v1 � vI � vR � @f1

@y
� @c1

@x
�8�

where uI and vI are the irrotational solutions, and uR and vR contain the e�ects of viscosity.
With the velocity potential

f1 � j�y�exp�ikx� ot� �9�
and stream function

c1 � w�y�exp�ikx� ot� �10�
de®ned in Eqs. (7) and (8), the liquid equations give

p1 � ÿr1
@f1

@t
, �11�

j 001 �y� ÿ k2j1�y� � 0 �12�
and

w 001 �y� ÿL2w1�y� � 0 �13�
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where L2 � k2 � o=n1 and the primes denote di�erentiation with respect to y. Solutions to Eqs.
(12) and (13), subject to the boundary conditions, give f1 and c1 and hence u1 and v1 for the
liquid. Furthermore, once the velocity potential is known, Eq. (11) gives the liquid pressure.
As determined by Squire (1953) and Hagerty and Shea (1955) for the case of inviscid sheets,

two solutions, or modes, exist which satisfy Eqs. (12) and (13) subject to the boundary
conditions at the upper and lower interfaces. For the ®rst solution, called the sinuous mode,
the waves at the upper and lower interfaces are exactly in phase as shown in Fig. 2(a). On the
other hand, for the varicose mode, the waves are p radians out of phase as shown in Fig. 2(b).
For the case of sinuous waves, solutions for the liquid velocity potential and stream function
are given by

f1 � C1
cosh�Lh�
cosh�kh�

ÿ
L2 � k2

�
2ik2

sinh�ky�exp�ikx� ot� �14�

and

c1 � C1cosh�Ly�exp�ikx� ot�, �15�
respectively, where C1 is a constant of integration.
If a stream function is also de®ned for the gas phase and is assumed to have the form

c2 � �Uÿ c�Zf�y� �16�
where c � io=k is the phase velocity, it can be shown that the gas equations give the following
di�erential equation for f:

f 00 � 2U 0

Uÿ c
f 0 ÿ k2f � 0 �17�

where primes denote di�erentiation with respect to y. If the boundary conditions given by Eqs.
(5) and (6) are mapped into f-space and it is assumed that U( y ) is constant (i.e., slip at the
interface), Eq. (17) can be solved to give

f � exp
�
k�hÿ y��: �18�

Furthermore, the gas pressure is given by

p2 � r2Z�Uÿ c�2f 0: �19�
When the velocity and pressure solutions are substituted into the normal stress condition, Eq.
(4), the following dispersion relation between o and k is obtained for the case of sinuous
waves:

o2
�
tanh�kh� �Q

�� o
�
4n1k2 tanh�kh� � 2iQkU

�
� 4n21k

4 tanh�kh�

ÿ4n21k
3L tanh�Lh� ÿQU 2k2 � sk3

r1
� 0 �20�
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where Q � r2=r1. Note that a similar analysis gives the dispersion relation for the varicose
mode, which can also be obtained by replacing tanh�kh� and tanh�Lh� in Eq. (20) with coth�kh�
and coth�Lh�, respectively.
Li and Tankin (1991) derived a dispersion relation similar to Eq. (20) for a viscous sheet in

the sinuous mode. Their equation, which was obtained from a linear analysis with a stationary
coordinate system, can also be used to obtain Eq. (20). This is accomplished by replacing o by
o ÿ ikU and by also noting that U has opposite sign in the stationary coordinate system. A
viscous dispersion relation has also been derived by Lin et al. (1990) who examined the
absolute and convective instability of liquid sheets subject to disturbances growing both
spatially and temporally.

3. Solutions of the dispersion relation

3.1. Inviscid sheets

While the viscous solution will be used to predict the sheet breakup length and subsequent
drop sizes in a following section, the simpler inviscid solutions can be used to provide
guidelines in formulating the appropriate assumptions to simplify Eq. (20). Thus, if viscosity is
neglected, Eq. (20) reduces to

o2
�
tanh�kh� �Q

�� o2iQkUÿQU 2k2 � sk3

r1
� 0 �21�

for the sinuous mode and

o2
�
coth�kh� �Q

�� o2iQkUÿQU 2k2 � sk3

r1
� 0 �22�

for the varicose mode. Solutions to Eqs. (21) and (22) for the growth rate o r are given by

o r �
���������������������������������������������������������������������������������
tanh�kh�QU 2k2 ÿ sk3=r1

�
tanh�kh� �Q

�q
tanh�kh� �Q

�23�

and

o r �
���������������������������������������������������������������������������������
coth�kh�QU 2k2 ÿ sk3=r1

�
coth�kh� �Q

�q
coth�kh� �Q

, �24�

respectively. Note that Eqs. (23) and (24) reduce to the growth rate expressions of Hagerty and
Shea (1955) if it is assumed that Q� tanh�kh�.
Eqs. (23) and (24) for the sinuous and varicose growth rates are shown in Figs. 3 and 4 for

gas Weber numbers We2 � r2U
2h=s of 0.5 and 5.0, respectively. It is clear that for the low

Weber number case, the growth of sinuous waves dominate the growth of varicose waves due
to the higher growth rates throughout the range of instability. On the other hand, for a We2
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Fig. 3. Inviscid dimensionless growth rates o rh=U as functions of dimensionless wave number kh for a gas Weber

number of We2 � 0:5.

Fig. 4. Inviscid dimensionless growth rates o rh=U as functions of dimensionless wave number kh for a gas Weber
number of We2 � 5:0.
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value of 5.0, the dimensionless growth rate curves are very similar, except at low values of the
dimensionless wave number kh, suggesting that the two modes are indistinguishable or that the
wave growth on one interface is independent of the growth on the other.
The above results suggest that the maximum growth rate of sinuous waves will always be

greater or equal to the maximum growth rate of varicose waves for the conditions of interest in
the present study. This was also deduced by Hagerty and Shea (1955) and Squire (1953), who
assumed that long waves grow on the interfaces so that tanh�kh�1kh. Eqs. (23) and (24) also
indicate that the varicose mode is more unstable for density ratios near unity, as also
determined by Rangel and Sirignano (1991). However, in the present work Q is signi®cantly
less than one and thus it is assumed that sinuous wave growth dominates.
With the long wave assumption described above, Eq. (23) reduces to

o r �
�������������������������������������������������������
QU 2k3hÿ sk3=r1�kh�Q�p

kh�Q
�25�

which is identical to Squire's result if it is further assumed that Q� kh so that2

o r �
������������������������������������
QU 2k2 ÿ sk3=r1

kh

s
: �26�

A comparison of Eq. (26) with the sinuous mode solution is given in Figs. 3 and 4 for gas
Weber numbers of 0.5 and 5.0, respectively. As shown in the ®gures, the long wave assumption
agrees very well for the low Weber number case, however, for the higher Weber number case
Eq. (26) is a poor approximation of the general inviscid sinuous mode growth rate expression,
Eq. (23). While long waves have been seen to grow on the surfaces of low velocity sheets
experimentally, it is possible that short waves grow at higher velocities or higher Weber
numbers. In fact, the range of instability, and in particular, the dominant unstable
dimensionless wave number in Fig. 4 suggests that this is indeed the case. Thus, if short waves
are assumed, tanh�kh� � coth�kh� � 1 and both Eqs. (23) and (24) reduce to

o r �
��������������������������������������������������
QU 2k2 ÿ sk3=r1�1�Q�

p
1�Q

�27�

which can be further simpli®ed to

o r �
�����������������������������������
QU 2k2 ÿ sk3=r1

p
�28�

in the limit of Q� 1.
A comparison of Eqs. (26) and (28) indicates that o r,short �

�����
kh
p

o r,long. In other words, short
wave growth will dominate long wave growth only if kh > 1 or equivalently if l=h<2p. This is
clear from Fig. 4 for We2 � 5:0, which includes a plot of Eq. (28). However, for a We2 of 0.5

2 In the present study, the liquid considered is automotive fuel which is injected into air at atmospheric conditions.
Q is of the order of 10ÿ3 and this assumption is reasonable for typical injection conditions.
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(see Fig. 3), kh<1 for the range of instability and thus long waves dominate over the entire
spectrum of wave numbers.
The present results indicate that the long wave assumption is in good agreement with the

general sinuous analysis for a We2 of 0.5, while the short wave assumption predicts the
maximum growth rate of the general analyses very well for a We2 of 5.0. The fact that the long
wave analysis predicts lower Weber number growth while the short wave analysis predicts
higher Weber number growth indicates that there is a cuto�, or critical Weber number, below
which long waves dominate and above which short waves dominate. This is shown in Fig. 5
which gives the dimensionless breakup length L/h (see Eq. (35)), as a function of We2 for the
general sinuous, short wave and long wave analyses. As indicated in the ®gure, the critical We2
can be determined as the point where the breakup lengths (or maximum growth rates) for the
long and short wave analyses are equal. For We2 below this value the long wave
approximation accurately predicts the breakup length, while the short wave approximation is
in very good agreement with the general sinuous analysis for We2 above this value. Thus, if the
dimensionless maximum growth rate for the long wave analysis (Eq. (26)) given by�

Osh

U

�
long

� 1

2

�������������
QWe2

p
, �29�

which occurs at a dimensionless wave number of Ksh � 1=2We2, is equated with the
dimensionless maximum growth rate for the short wave analysis (Eq. (28)) given by

Fig. 5. Dimensionless breakup length as a function of We2 for the general, inviscid sinuous, long wave and short
wave analyses.
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�
Osh

U

�
short

� 2

3
We2

�����
Q

3

r
, �30�

which occurs at Ksh � 2=3We2, it can be shown that the critical Weber number (based on the
sheet half thickness h ) is given by We2 � 27=16.
While Eq. (26) for long waves was shown to be valid for moderate We2 below the critical

value of 27/16 (see Fig. 3), the assumption that Q� kh breaks down for very low gas Weber
numbers. This is illustrated in Fig. 6 which gives the dimensionless growth rates obtained from
Eqs. (25) and (26) as functions of the dimensionless wave number for a We2 of 0.05. It is clear
from this ®gure that Eq. (26) overpredicts both the maximum growth rate and the range of
instability. It can be shown that Eq. (25) predicts that unstable waves will grow for kh<We2 ÿ
Q while the instability range for Eq. (26) is given by kh<We2. As a result, Eq. (26) should be
used with caution for very low We2. This may be the case for very low ®lm velocities and/or
very thin sheets.
The identi®cation of long and short wavelength regimes for liquid sheet breakup is similar to

the ®rst and second wind induced regimes for cylindrical jet breakup (Reitz and Bracco, 1986).
However, while the gas inertia assists the surface tension force in the destabilization process for
jets (in the ®rst wind induced regime), surface tension is stabilizing for sheets. This is apparent
if Q is set to zero in either Eq. (26) or (28) so that only surface tension is acting on the sheet.
Thus, for a sheet the breakup length decreases continuously as the gas Weber number is
increased (see Fig. 5) while the destabilizing e�ect of surface tension on a jet causes the
breakup length to grow from zero to a maximum and then decrease again as We2 is increased
(Reitz and Bracco, 1986).

Fig. 6. Inviscid dimensionless growth rates o rh=U as functions of dimensionless wave number kh for a gas Weber
number of We2 � 0:05.
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Levich (1962) analyzed the inviscid dispersion relation for a cylindrical jet in the limit of
ka� 1, where a is the jet radius. With this assumption it was found that the dispersion
relation reduced to Eq. (28), which suggests that short waves are independent of the nature of
the surface on which they grow. Note, however, that short waves begin to dominate for sheets
if l=h<2p, i.e., if the wavelength is less than about six times the sheet half thickness. Thus, the
wavelengths of these short waves are not necessarily smaller than the thickness of the sheet. On
the other hand, Eq. (28) was derived for jets only in the limit that the jet radius is much larger
than the wavelength, in which case the curvature of the surface has no e�ect on the instability.

3.2. Viscous sheets

As stated above, Li and Tankin (1991) derived a dispersion relation similar to Eq. (20) for a
viscous sheet from a linear analysis with a stationary coordinate system. The full equation was
solved numerically to obtain o r as a function of k for various conditions, and to examine the
e�ects of liquid viscosity on the instability. While Li and Tankin's dispersion relation is quite
general, a simpli®ed relation which captures the essential features of Eq. (20) would be
bene®cial for application to multi-dimensional simulations. Thus, the results of Section 3.1 for
an inviscid liquid are used in this section to produce a closed-form expression for viscous
sheets.
Dombrowski and Johns (1963) provided a simpli®ed dispersion relation from an analysis of

the aerodynamic instability and disintegration of viscous sheets and obtained a growth rate
expression for long waves. However the e�ect of viscosity is underpredicted in their result due
to the assumptions in the formulation. In particular, Dombrowski and Johns treated the ®lm
as one-dimensional by assuming no variation in the y-direction (see Fig. 2). As a result, the
shear stress is given by tyx � m1�@v=@x� throughout the sheet, including the boundaries.
However, this is inconsistent with the necessary condition of continuity of shear stress at the
interfaces. The assumption of an inviscid gas would then imply that tyx is zero at the interface.
Thus, while the analysis of Dombrowski and Johns reduces to the correct dispersion relation
for an inviscid liquid with long wave growth, their approach is inconsistent when the e�ect of
viscosity is included.
To provide a simpli®ed viscous dispersion relation, Eq. (20) for sinuous waves is further

analyzed. First of all, an order of magnitude analysis using typical values of Ks and Os from
the inviscid solutions shows that the terms of second order in viscosity can be neglected in
comparison to the other terms in Eq. (20). Thus, with this simpli®cation, the growth rate for
the sinuous mode is given by

o r � ÿ2n1k2 tanh�kh�
tanh�kh� �Q

�
��������������������������������������������������������������������������������������������������������������������������������������
4n21k4 tanh2�kh� ÿQ2U 2k2 ÿ �tanh�kh� �Q

�ÿÿQU 2k2 � sk3=r1
�q

tanh�kh� �Q
�31�

For long waves in the limit of Q� kh, Eq. (31) reduces to
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o r � ÿ2n1k2 �
���������������������������������������������
4n21k4 �

QU 2k

h
ÿ sk2

r1h

s
�32�

which is similar to Dombrowski and John's expression, but with the correct coe�cients for the
viscous terms (Dombrowski and John's expression can be obtained by dividing each of the
viscous terms in Eq. (32) by four). Furthermore, if short waves are assumed for high-speed
sheets and Q� 1, Eq. (31) reduces to

o r � ÿ2n1k2 �
����������������������������������������������
4n21k4 �QU 2k2 ÿ sk3

r1

s
�33�

which would also be obtained from the dispersion relation for the varicose mode for the same
assumptions. Eqs. (32) and (33) are presented in Figs. 7 and 8 with their inviscid counterparts
for a We2 of 0.5 and 5.0, respectively. It is clear from these ®gures that the inclusion of
viscosity reduces both the maximum growth rate and the corresponding wave number, as in
the case of liquid jets, without altering the instability range of kh<We2. In addition, the e�ect
of viscosity is minimal for Squire's regime (i.e., for We2<27=16 or long wave growth), as
shown in Fig. 7, while the inclusion of the viscous terms are necessary to accurately predict the
wave growth of short waves as shown in Fig. 8.
In order to validate the assumptions used to reduce Eq. (20) to Eq. (33) for high Weber

numbers, numerical solutions of the maximum growth rate and corresponding wavenumber
were calculated via Muller's method. Table 1 presents the dimensionless growth rates and
wavenumbers for gas-phase Weber numbers of 5.0 and 10.0 for Eqs. (20), (31) and (33). It is

Fig. 7. Viscous and inviscid dimensionless growth rates o rh=U as functions of dimensionless wave number kh for a
gas Weber number of We2 � 0:5:
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clear from the calculations that the present simpli®ed dispersion relation adequately captures
the wave growth process for high-speed sheets.

4. Methodology for modeling sheet breakup and drop formation

4.1. Breakup mechanism

In the present work, the physical mechanism of sheet disintegration proposed by
Dombrowski and Johns (1963) is adopted in order to predict the drop sizes produced from the
primary breakup process. As shown in Fig. 1, disintegration occurs due to the growth of waves

Fig. 8. Viscous and inviscid dimensionless growth rates o rh=U as functions of dimensionless wave number kh for a

gas Weber number of We2 � 5:0:

Table 1
Comparison of dimensionless maximum growth rates Osh=U and wavenumbers Ksh for the general, viscous dis-

persion relation Eq. (20), Eq. (31) and the simpli®ed short wave expression Eq. (33)

Eq. (20) Eq. (31) Eq. (33)

We2 � 5:0
Osh=U 0.0660 0.0633 0.0633

Ksh 3.0623 2.9051 2.9323
We2 � 10:0
Osh=U 0.1180 0.1082 0.1085

Ksh 5.7239 5.2841 5.2918
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on the surfaces caused by the aerodynamic forces acting on the sheet. Once the waves reach a
critical amplitude, fragments of liquid are broken o� which contract to form cylindrical
ligaments that are believed to move normal to the ligament axis. As a result, capillary forces
cause the unstable ligaments to break into drops.
Eqs. (32) and (33) indicate that while the growth rate of long waves depends on the sheet

thickness, the growth rate of short waves is independent of the thickness of the sheet. Thus, in
order to predict the onset of ligament formation for short wave growth (We2 > 27=16), a sheet
breakup length is formulated based on the analogy of the prediction of the breakup length of
cylindrical liquid jets (e.g., Reitz and Bracco, 1986). If the surface disturbance has reached a
value of Zb at breakup, a breakup time t can be evaluated via:

Zb � Z0exp�Ost��)t � 1

Os

ln

�Zb

Z0

�
�34�

where Os is the maximum growth rate obtained from Eq. (33). Thus, the sheet will break up at
a length given by

L � Vt � V

Os

ln

�Zb

Z0

�
�35�

where the quantity ln�Zb=Z0� is given the value 12 in the present study based on the work of
Dombrowski and Hooper (1962). It is important to note that the quantity V in Eq. (35) is the
absolute velocity of the liquid sheet while the velocity U in Eq. (33) is the relative velocity
between the liquid and gas.
For a parallel-sided sheet, the half thickness h is not a function of radial position and thus

the above formulation can be used directly to determine the maximum growth rate and
corresponding wave number for long waves with Os determined from Eq. (32). However, for
attenuating sheets the thickness is inversely proportional to the radial distance from the
injector nozzle and thus h in Eq. (32) changes with time. As a result, the growth rate must be
integrated over time so that the total growth is used to predict the breakup length for long
waves. From Eq. (1), it is clear that @Z=@t � oZ and hence

ln

� Z
Z0

�
�
�t
0

o dt 0: �36�

It was shown in the previous section that viscosity has a minor e�ect on wave growth in the
long wave regime. As a result, Eq. (26) can be used in Eq. (36) for simplicity. If the
substitution h � J=t is made and the integration is performed, it can be shown that Eq. (36)
results in the following expression for the breakup length L � Vt of the sheet:

L � V

�
3ln

�Zb

Z0

��2=3� Js
Q2U 4r1

�1=3

�37�

which is similar to the breakup length expression given by Clark and Dombrowski (1972). In
the above formulation, V and U are once again the absolute sheet velocity and liquid/gas
relative velocity, respectively, and J is a constant. In addition, the most unstable wave number
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is given by

Ks � r2U
2

2s
�38�

for long wave growth.
Ligaments are assumed to form from the sheet fragments at the point of breakup (given by

either Eq. (35) or (37) and their diameter can be obtained from a mass balance. For the case of
short waves it is assumed that the ligaments are formed from tears in the sheet once per
wavelength, and the resulting diameter is given by

dL �
���������
16h

Ks

s
�39�

where Ks is determined from Eq. (33). On the other hand, for long wave growth it is assumed
that the ligaments are formed from tears in the sheet twice per wavelength and the resulting
diameter is given by

dL �
������
8h

Ks

s
�40�

where Ks is now given by Eq. (38).
Since the ligaments are oriented transversely to the sheet ¯ow direction, the surrounding gas

is assumed to have little e�ect on their breakup and surface tension is responsible for
destabilization. In addition, the e�ect of liquid viscosity is to move the most unstable waves to
longer wavelengths without altering the range of instability, which is given by kdL=2<1 for the
Rayleigh (1879) breakup regime. If it is assumed, as in the work of Dombrowski and Johns
(1963), that breakup occurs when the amplitude of the unstable waves is equal to the radius of
a ligament, one drop will be formed per wavelength. A mass balance then gives

d 3
D �

3pd 2
L

KL

�41�

for the drop size dD where KL is determined from

KLdL �
"
1

2
� 3m1

2
ÿ
r1sdL

�1=2
#ÿ1=2

�42�

which is Weber's result for the wave number corresponding to the maximum growth rate for
the breakup of a cylindrical, viscous liquid column (Weber, 1931). Substitution of Eq. (42) into
Eq. (41) gives

dD � 1:88dL�1� 3Oh�1=6 �43�
for the drop diameter where Oh � m1=�r1sdL�1=2 is the Ohnesorge number.
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4.2. Computer model

The breakup length and drop size equations presented above have been implemented in the
KIVA-3V code to calculate the behavior of pressure-swirl atomizers. The KIVA-3V code was
originally developed at Los Alamos National Laboratory to calculate three-dimensional,
transient, reactive ¯ows with sprays, and the numerical details are given by Amsden (1997). In
the present simulations, a two-dimensional domain is used, due to the assumed axisymmetry of
the injector nozzles.
The present breakup length expressions for short and long wave growth (Eqs. (35) and (37))

require that the velocity of the liquid sheet be known. Schmidt et al. (1999) assumed that the
injector exit velocity pro®le is uniform and that the total velocity is related to the injection
pressure Dp by

V � kv

���������
2Dp
r1

s
�44�

where the velocity coe�cient kv is given by

kv � max

"
0:7,

4 _m

pd 2
0r1 cos y

���������
r1
2Dp

r #
�45�

where _m and y are the measured mass ¯ow rate and spray angle, respectively, and d0 is the
injector exit diameter. Details of Eqs. (44) and (45) can be found in the work of Schmidt et al.
(1999).
Assuming that Dp is known, Eq. (44) can be used to ®nd V and hence the axial component

of the sheet velocity u via:

u � V cos y: �46�
The initial sheet thickness h0 is related to _m and u by conservation of mass:

_m � pr1uh0�d0 ÿ h0�: �47�
The thickness of the sheet as a function of the distance from the ori®ce is calculated assuming
that the sheet velocity is constant in time. It is further assumed that the relative velocity
between the sheet and the gas is equal to the absolute velocity of the liquid near the injector
(i.e., U � V). Thus, Eqs. (44)±(47) provide su�cient information for use in the linear stability
analysis presented in Sections 2 and 3.
The present injection conditions produce wave growth in the short wave regime, and thus

Eqs. (33) and (35) are used for determining breakup length. The thickness at the point of
breakup can be calculated from the breakup length and Eqs. (39), (41) and (42) can then be
used to predict drop size. The actual drop size is chosen from a Rosin±Rammler distribution
with the size predicted from Eq. (41) as the mean size. At the point of primary breakup, the
droplets are tracked using the Lagrangian treatment of Dukowicz (1980) and each droplet is
assumed to represent a parcel of physically similar drops (i.e., similar kinematic and
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thermodynamic properties). The droplets exchange momentum with the gas through source
terms in the gas-phase equations. Droplet collision and coalescence are calculated according to
the model of O'Rourke (1981). Turbulent dispersion and distortion are also considered, and
secondary droplet breakup is calculated using the Taylor Analogy Breakup (TAB) model
(O'Rourke and Amsden, 1987). The gas phase equations are solved using the Arbitrary
Lagrangian±Eulerian (ALE) algorithm (Amsden, 1997).

5. Application to pressure-swirl atomizers

The proposed model was validated using experimental data from two high-speed, automotive
fuel injectors. In both cases, Stoddard Solvent was the working liquid. The ®rst injector,
referred to as Injector A in the present work, is a prototype pressure-swirl injector, which has
been studied experimentally by Parrish (1997) and computationally by Han et al. (1997).
Injector A is an inwardly-opening injector with an air core as shown in Fig. 9(a) with run
conditions given in Table 2. Note that the two cases, referred to as Case 1 and Case 2, are
simulated for this injector. Case 2 has a shorter injection duration, and hence a higher injection
pressure, compared to Case 1. In this injector, the liquid fuel passes through swirl ports,
accelerating tangentially, and enters a swirl chamber. The centrifugal motion of the liquid
forms a hollow air core. The area of this swirl chamber reduces to a nozzle, further increasing
the tangential velocity. The liquid passes through the nozzle and then forms a free sheet which
is modeled with Eqs. (44)±(47) in the present work. In addition, Injector A produces a pre-
spray during the initial transients. This feature is not related to sheet atomization and was
arbitrarily added to the computation by initializing its drop size to the diameter of the injector
ori®ce.
The results of the calculations are compared with photographs taken by Parrish (1997) in

Fig. 10. The images were obtained with a CID camera system. The photographs indicate the
overall, qualitative agreement between the predictions and the measured spray which is an
important check of the droplet±gas interaction models, such as drag and breakup. Both the

Fig. 9. Schematic of an (a) inwardly-opening and (b) outwardly-opening pressure-swirl atomizer.
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Table 2
Injector and liquid characteristics for Injector A

Injection pressure (MPa) 4.86 (Case 1), 6.12 (Case 2)
Mass injected (mg) 44.0

Injection duration (ms) 3.86 (Case 1), 3.4 (Case 2)
Fuel density (g/cm3) 0.77
Fuel viscosity (g/cm sÿ1) 4.7eÿ3
Surface tension (g/s2) 18.16
Ambient pressure (MPa) 0.1
Ambient density (g/cm3) 1.17eÿ3

Fig. 10. Comparison of photographs and computer model predictions for Injector A. The numerical results present
a two-dimensional slice through the spray, in order to show the spray structure.
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photographs and the predictions show the development of an exterior vortex ring that entrains
droplets upwards and away from the main spray.
The spray penetration for both the measurements and the computations for Case 1 is shown

in Fig. 11 as a function of time. The measured and computed spray penetration were obtained
from spray images, examples of which are shown in Fig. 10. The pre-spray and main spray are
considered separately, since the main spray is of primary interest in the current study. An
accurate prediction of penetration depends on both the droplet size predictions and the droplet
velocities. The penetration in Fig. 11 shows excellent agreement; however, this is not a
complete validation of the model, since errors in drop size could o�set errors in velocity. As a
separate check of the model predictions, the predicted drop size was compared to the
experimental measurements. The drop size shown in Fig. 12 is the average over a plane located
39 mm downstream of the injector and oriented perpendicular to the spray axis. Experimental
drop size distributions were obtained with a di�raction based particle sizing technique and
were integrated to calculate the Sauter mean diameter. As described by Han et al. (1997), the
line-of-sight particle sizing measurements utilized a CID camera as the detector and a Chin±
Shifrin analytical inversion (Chin et al., 1955). Both the experimental and the predicted drop
size are initially large due to the pre-spray; however, they both approach a nearly constant
value later in the injection. The slight disagreement at the very end of injection suggests that
the end of the injection comes too early in the model. Additional comparisons of penetration
and Sauter mean diameter for Injector A, Case 2 are presented in Figs. 13 and 14, respectively.
As for Case 1, the model predictions agree well with the experimental measurements.
To further validate the model, an outwardly opening injector (called here Injector B) was

modeled which includes a pintle and no air core. Injector B was experimentally characterized

Fig. 11. Measured and predicted spray penetration for Injector A, Case 1.
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Fig. 12. Measured and predicted Sauter mean diameter for Injector A, Case 1. The drop sizes are averaged over a
plane 39 mm downstream of the injector.

Fig. 13. Measured and predicted spray penetration for Injector A, Case 2.
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by Xu and Markle (1998) and its characteristics are described in Table 3. This injector does
not produce a pre-spray due to the pintle. In addition, since the initial thickness of the sheet is
determined by the size of the annular gap, one less equation is needed to initialize the
calculation. Eq. (44) is not used since the velocity can be calculated from conservation of mass,
assuming slug ¯ow at the exit of the injector.
The results for the outwardly opening injector were compared to the published results of Xu

and Markle (1998) for room temperature conditions and ambient pressures of 0.1 and 1.5
MPa. The computed spray penetration for the two cases is shown in Fig. 15 alongwith the
experimental results. For the atmospheric pressure case, the initial drop diameter was predicted
to be 30.9 mm, the breakup length was found to be 1.2 mm and the gas Weber number was

Fig. 14. Measured and predicted Sauter mean diameter for Injector A, Case 2. The drop sizes are averaged over a
plane 39 mm downstream of the injector.

Table 3

Injector and liquid characteristics for Injector B

Injection pressure (MPa) 10.0 10.0

Mass injected (mg) 14.0 14.0
Injection duration (ms) 12.0 13.0
Fuel density (g/cm3) 0.76 0.76

Fuel viscosity (g/cm sÿ1) 4.25eÿ3 4.25eÿ3
Surface tension (g/s2) 18.16 18.16
Ambient pressure (MPa) 0.1 1.5

Ambient density (g/cm3) 1.17eÿ3 1.75eÿ2
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9.76. Secondary drop breakup was found to be important in this case, producing an SMD of
21.7 mm located 30 mm downstream of the injector. For the atmospheric pressure case, Xu and
Markle report a somewhat smaller radially-averaged SMD measurement of 15.0 mm at the
same axial location.
The e�ect of increased ambient pressure and density is very signi®cant. The spray tip

penetration in a high pressure environment is much less than in an atmospheric pressure case.
Both the computed and measured results show a relatively small penetration, as shown in Fig.
15 and thus the numerical model appears to correctly respond to increased ambient pressure
and density. The initial drop diameter in this case was predicted to be 10.6 mm. The breakup
length was also very small, 37 mm, and the gas Weber number in this case was 121.87. The
short breakup length and small droplets are due to the high growth rate. Eq. (33) indicates
that high density ratios create faster wave growth. No experimental drop size measurements
were made by Xu and Markle for the high ambient pressure case, so the drop size predictions
cannot be validated. However, the penetration is consistent with the experimental data.
It is important to note that the present comparisons with experimental measurements

validate the spray model as a whole (i.e., the e�ects of primary atomization, secondary drop
breakup, drop drag and collision and coalescence), and do not directly validate the primary
breakup expressions presented in this work. However, there are currently no experimental
observations of the primary atomization process available for high-speed liquid sheets due to
the dense spray and extremely small breakup lengths. As a result, a multi-dimensional code
which includes models for all of the key physical processes has been appropriately used for
validation purposes in the present work.

Fig. 15. Measured and predicted penetration for Injector B.
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6. Conclusions

The atomization of a thin, viscous, liquid sheet in a gas has been studied using a linearized
stability analysis. The dispersion relationship has been derived and analyzed. It was found that
there are at least two distinct regimes of ®lm atomization. At low gas Weber numbers, the ®lm
is broken up by long waves. In this regime, analogous to the ®rst wind induced regime for
cylindrical jets, viscosity is unimportant. For gas Weber numbers above 27/16, short waves
dominate the breakup process. In this regime, analogous to the second wind induced regime
for cylindrical jets, the e�ect of viscosity is very signi®cant. Using these observations, the
dispersion relationship for the two breakup regimes has been simpli®ed.
The simpli®ed dispersion relationships have been implemented into a multi-dimensional CFD

code and compared to experimental measurements of spray penetration and drop sizes for two
di�erent types of pressure-swirl injectors. The agreement between the predicted and
experimental results were very good for both the cases. The numerical predictions of drop size
and spray penetration were quantitatively validated. In addition, the predicted spray shape was
qualitatively validated by comparison to high-speed photography. Furthermore, the model was
found to accurately predict penetration in high-pressure environments.
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